References
1. Ovchinnikova, M. F. (2013). Signs of natural stability and agrogenic transformation of soil humus. Soil science, 12, 1449. doi: 10.7868/S0032180X13120083 [in Russian].
2. Shoba, V. N., & Chudnenko, K. V. (2014). Ion-exchange properties of humic acids. Soil science, 8, 921. doi: 10.7868/S0032180X14080115 [in Russian].
3. Shevtsova, L.K., Khaidukov K.P., & Kuzmenko N.N. (2012). Transformation of organic matter in light loamy podzolic soil during long-term use of fertilizers in flax crop rotation. Agrochemistry, 10, 3-12. [in Russian].
4. Drichko, V. F., Bakina, L. G., & Orlova, N. E. (2013). Stable and labile parts of humus in podzolic soil. Soil science, 1, 41-47. doi: 10.7868/S0032180X12110032 [in Russian].
5. Skrylnyk, Ie. V., Kutova, А. М., Hetmanenko, V. A., Аrtemieva, R. S., & Nikonenko, V. M. The influence of fertilization systems on organic matter and agrochemical indicators of typical chernozem. (2019). Agrochemistry and Soil Science, 88, 74-78. doi: 10.31073/acss88-10 [in Ukrainian].
6. Volodina, T. I., Romanov, G. A., & Levchenkova, A. N. (2014). The influence of various fertilizer systems on the physicochemical and agrophysical parameters of podzolic soil in the conditions of the north-west of Russia. Agrochemistry, 3, 12-21. [in Russian].
7. Kuzmenko, N. N. (2014). Efficiency of long-term use of different fertilizer systems in flax crop rotation and their influence on changes in humus reserves in podzolic soil. Agrochemistry, 4, 35-39. [in Russian].
8. Kaiser K., & Kalbitz K. (2012). Cycling downwards–dissolved organic matter in soils. Soil Biol. Biochem, 52, 29-32. doi: 10.1016/j.soilbio.2012.04.002
9. Yilmaz E., & Sönmez M. (2017). The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil and Tillage Research, 168, 118-124. doi: 10.1016/j.still.2017.01.003
10. Elbl, J., Brtnicka, H., Kintl, A., Holatko, J., & Brtnicky, M. (2019). Use of organic-mineral fertilizers as alternative to conventional organic and mineral fertilizers: effect on soil quality. / International Multidisciplinary Scientific Geo Conference: SGEM. Sofia, 19, 583-590. doi: 10.5593/sgem2019/3.2/S13.076
11. Hassin, A. L. Makhlof, Hassan Abd El-mawla Mohammeda, & Gomoa, L. Ahmed, (2019). Effect of оrganic (biochar, compost and chicken manure) and mineral fertilization on available NPK on Sandy Soil. Journal of Pure & Applied Sciences,18 (4), 86-91. doi: 10.51984/jopas.v18i4.392
12. Piccolo, A. (2002).The supramolecular structure of humic substances. A novel understanding of humus chemistry and application in Soil Science. Advances in Agronomy, 75, 57-133. doi: 10.1016/S0065-2113(02)75003-7
13. Milanovsky, E. Yu. (2009). Soil humus substances as natural hydrophobic-hydrophilic compounds. Moscow: GEOS. [in Russian].
14. Perminova, I. V. (2008). Humic substances are a challenge for chemists of the 21st century. Chemistry and life, 1, 50-56. [in Russian].
15. Semenov, V. M., Tulina, A. S., Semenova, N. A., & Ivannikova, L. A. (2013). Humification and nonhumification pathways of the organic matter stabilization in soil: а review. Eurasian Soil Science, 46, 355-368. doi: 10.1134/S106422931304011X
16. Debska, B., Drag, M., & Banach-Szott, M. (2007). Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from Forest Soil. Soil & Water Res, 2, 45-53.
17. Wells, M. J. M., & Stretz, H. A. (2019). Supramolecular architectures of natural organic matter. Science of the Total Environment, 671, 1125-1133. doi: 10.1016/j.scitotenv.2019.03.406
18. Dolenko, S. A., Trifonova, M. Y., & Tarasevich, Y. I. (2017). Aqueous solutions of humic acids as self-organizing dissipative systems. Journal of Water Chemistry and Technology, 39, 360-367. doi: 10.3103/S1063455X17060091
19. Nuzzo, A., & Sánchez, A. (2013). Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexation. Journal of Geochemical Exploration, 129, 1-5. doi: 10.1016/j.gexplo.2013.01.010
20. Osterman, L. A. (1985). Chromatography of proteins and nucleic acids. Practical guide. Moscow: Science. [in Russian].
21. Orlov, D. S., & Milanovsky, E. Yu. (1987). Gel chromatography in soil science – possibilities and limitations of the method. In: Modern physical and chemical methods of soil research. Moscow: Moscow State University (pp. 94-118). [in Russian].
22. Cabaniss, S. E., & Leenheer, J. A. (1998). Aqueous infrared carboxylate absorbances: aliphatic di-acids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 449-458. doi: 10.1016/S1386-1425(97)00258-8
23. Ovchinnikova, M. F. (2012). Signs and mechanism of agrogenic transformation of humic substances in podzolic soil. Agrochemistry, 1, 3-13. [in Russian].
24. Brovarova, O. V. (2021). Transformation of humic substances in soddy-podzolic soil under agrogenic impacts. Fertility, 6, 17-22. doi: 10.25680/S19948603.2021.123.05. [in Russian].
25. Kalinichev, A., & Iskrenova-Tchoukova, E. (2011). Effects of Ca2+ on supramolecular aggregation of natural organic matter in aqueous solutions: a comparison of molecular modeling approaches. Geoderma, 169, 27-32. doi: 10.1016/j.geoderma.2010.09.002